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Abstract-In this paper, the statistical dynamic responses of a nonuniform beam with stochastic
Young's modulus of elasticity are obtained by using the perturbation technique in conjunction
with the finite element method. The proposed method produces the expectation, variance and
autocorrelation function of the deflection, strain and stress that are quite useful in estimating the
structural safety and reliability. Some statistical responses obtained by the perturbation method are
checked by the Monte Carlo simulation, also. the reliability analysis of the structure is performed
based on certain failure criteria of the structure.

1. INTRODUCTION

Since the early 1970s, the applications of the stochastic finite element method have been
deveioped rapidly. Among others, the following researchers have already contributed to
the development of this field. Astill et al. (1972) used the Monte Carlo simulation method
to study the structural response variability due to random properties in structures, Hisada
and Nakagiri (1980a, b, 1981, 1983, 1985) used the perturbation method with finite element
method to investigate some structural problems, The stochastic finite element method was
adopted by Baecher and Ingra (1981) to predict the settlement of the structure on
foundation. Vanmarcke and Grigoriu (1983) also used the stochastic finite element method
to demonstrate the use of spatial averaging of random fields to simple beams with random
rigidity. A similar approach has been used by Liu et al. (1986) with applications to elasto­
plastic and nonlinear dynamic problems. Recently, Shinozuka and Dasgupta (1986) have
adopted Neumann expansion with Monte Carlo simulation to demonstrate the advantages
of the formulation to dynamic problems. Also, Der Kiureghian and Ke (1988) used the
stochastic finite element method to study the safety and reliability of the structure. Shino­
zuka and Dasgupta (1986) and Shinozuka and Deodatis (1988) used the finite element
method in conjunction with Neumann expansion and Monte Carlo simulation techniques
to investigate the statistical dynamic response of the structure due to random material
properties or geometries in structures and studied the structural safety and reliability. More
recently, Bucher and Shinozuka (1988) and Kardara et al. (1989) used the Green's function
formulation to determine the mean square response of statistically indeterminate structures.

In general, the structural uncertainties might include the Young's modulus ofelasticity,
Poisson's ratio, cross section, length and the geometric imperfection of the beam. However,
in this study, only the Young's modulus of elasticity is considered as a stochastic field with
respect to the position, and then the stochastic finite element method along with perturbation
method is used to investigate the stochastic dynamic response of a nonuniform beam which
is loaded with a deterministic transverse dynamic load. These statistical dynamic responses
can be used for estimating the reliability of the structure.

2. DYNAMIC FINITE ELEMENT EQUATION

Considering a simple beam element with uniform cross section area A, constant
moment of inertia I, Young's modulus of elasticity E, density p and length I. The simple
beam element is assumed to have two degrees of freedom at each nodal point: a transverse
deflection wand an angle ofrotation e(or ow/ox). To derive dynamic finite element equation
of motion of the beam, we use the Lagrange's equation with the strain energy and kinetic
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energy as follows:
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(1)

where T is the kinetic energy of a beam element, U is the strain energy of a beam element,
both energies are functions of the translational displacement w, also Fi is the nodal force
or moment, qi is the nodal translational displacement or rotational displacement, subscript
i is the degree of freedom number. Substituting the displacement function into the
expressions for both T and U and then performing the differentiation as indicated in eqn
(1), we obtain:

F= ~(OT) OU =
I dt ow + ow (2)

where w/s and (}/s are the translational displacements and rotational displacements at the
two ends of the beam element, respectively. In general, the mij and kij in eqn (2) can be
expressed in the following form individually,

(3)

(4)

where 4J/s are the shape functions representing the deflection curve for the beam element
produced by setting the corresponding degree of freedom to one and the remaining degrees
offreedom to zero. Based on eqns (3) and (4) it is quite straightforward to obtain the local
consistent mass matrix [m] and local stiffness matrix [k]. Assembling each element and
considering the damping forces, we can derive a global dynamic finite element equation of
motion for a nonuniform beam as follows:

[M][W] + [C][W] + [K][W] = [F), (5)

where [M] is the global consistent mass matrix, [C] is the global damping matrix, [K] is
the global stiffness matrix, [F) is the global forcing vector involving the transverse distributed
loading p(x, t). The introduction of boundary conditions into eqn (5) is of course done in
the standard way.

3. PERTURBATION TECHNIQUE

In this study, only the Young's modulus of elasticity E is considered to be stochastic
in position, the moment of inertia, the geometric shapes and sizes of the structure are
assumed to be deterministic as well as the time-dependent distributed load. Applying the
perturbation technique, the stochastic Young's modulus can be assumed as:

(6)

where Eo is the mean value ofthe modulus ofelasticity and 1/ is a zero-mean, one dimensional
real homogeneous stochastic field, denoting the fluctuation of the elastic modulus around
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its mean value and is assumed to be uniform within each element. Then the stochastic local
and the global matrices can be written individually as follows:

NE

[K] = [KO] + L [K/]'1;,
j= I

(7)

(8)

where the superscript 0 represents the deterministic term, and ~ is the merging with respect
to the element, i means the element number and NE is the total number of the element.
Similarly, the nodal displacement vector [W] can be assumed as :

NE NE NE

[W] = [W0] + L [Wi]'1i + L L [W;~]'1j'1j,
i~ I i~ I j= 1

(9)

where j is the element number as well as i counting the number of elements.
Substituting eqns (8)-(9) into (5) and applying the second order perturbation technique

to eqn (5), we obtain the following:

[M][W°] + [C][W°] + [KO][W0] = [Fl,

[M][W/] + [C][Wi] + [KO] [Wi] = - [Ki][W0],

[M][Wh] + [C][Wi~] + [KO][Wh] = - [Ki][Wj]'

(10)

(II)

(12)

The solutions of eqns (10)-(12) are achieved by using a step by step numerical inte­
gration algorithm. More specifically, the Newmark integration method is chosen to solve
[WO], [Wi], and [Wh] successively.

4. STATISTICAL DYNAMIC ANALYSIS

The statistical dynamic response of a nonuniform beam can be calculated once [W0],
[Wi], and [W;~] are obtained. For any fixed time, the autocorrelation of the deflection W
between two different points p and q can be evaluated by using the first rate of change in
nodal displacement Wi as follows:

NE NE

= L L [W~;][W~j]E['1j'1j],
i= I j~ I

E['1i'1j] = R~(xj-xj)

= R~(Ax),

(13)

(14)

where E['] is the expectation, and R~(Ax) is the autocorrelation of random variable '1. If
the stochastic process of the random variable '1 is homogeneous with respect to position,
xp and xq are the coordinates at the center of the beam elements p and q. When the stochastic
process of the settlement w is homogeneous along the x-axis, Rw(xp,xq) is replaced by
Rw(xp-xq), therefore, the autocorrelation Rw(Ax) can be computed readily provided that
the spectral density S~(K) of random variable '1 is known. In this paper, the spectral density
S~(K) is assumed to be:

(15)
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where (J~ denotes the standard deviation of the stochastic field y/(x) or the coefficient
of variation of the Young's modulus of elasticity, and K is the wave length. Also, the
autocorrelation R~(t..x), which is the Wiener-Khintchine transform of the spectral density
S~(K), can be expressed as follows:

(16)

Therefore, the autocorrelation RwCAx) can be computed readily from eqns (13)-(16).
Meanwhile, the variance vector of the deflection indeed is the diagonal components of eqn
(13) as follows:

NE NE

Var [W] = L L diag {[WlJ[Wj]E[Y/iy/j]}'
i~ I j= I

(17)

It should be noted that not only the expectation, variance and autocorrelation Rw(Ax)
of the deflection w can be obtained but also the statistical strain and stress can be evaluated
by a similar procedure. Furthermore, it is also quite straightforward to compute the
statistical quantities of the velocity and acceleration.

5. SOME OTHER STATISTICAL RESPONSES

The statistical responses such as strain and stress other than deflection can be calculated
by utilizing the standard finite element technique. Noting that the strain-displacement
relationship can be described as :

(18)

where e denotes the eth element and [Be] is given by the following expression:

where ¢;'s are the shape functions denoted before, and [We] can be written as:

NE NE NE

[We] = [W~] + L [Wlil1i] + L I [W;i;Y/,Y/;J,
i~ 1 i= I ;~ 1

(19)

(20)

then the strain vector of the eth element lee] = [exJ is obtained by substituting eqn (20)
into eqn (18) as follows:

with the relationship

NE NE NE

lee] = [e~] + L [el;]l1i+ L L [e;ij]l1iY/j,
i= I l~ I j= I

[e~] = [Be][W~],

[el;] = [Be][Wl;],

(21 )

(22)

(23)

(24)

Similarly, the stress vector of the eth element [O'e] = [O'xx], is represented by stress­
strain relationship:

(25)
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where [Eel is the elasticity matrix of the eth element and can be expanded into the following
series:

(26)

where [E~l is the elasticity modulus evaluated at fie = 0, [En and [E;el are the first and
second derivatives of [Eel with respect to fie and evaluated at 'Ie = O.

Introducing eqns (21) and (26) into eqn (25), [ael is obtained as:

NE NE NE

= [cr~l+ L[cr;;}'li+ L L [cr;;jl'li'lj+"',
i= 1 i= 1 j= 1

with the relationships:

[a~l = [E~J[8~l,

[a;;] = [E~J[£;;} + <5 ie [EJ] [B~J,

in which <5mn denotes Kronecker's delta.

(27)

(28)

(29)

(30)

6. MONTE CARLO SIMULAnON

In general, Monte Carlo simulation is used to check the statistical quantities by some
other methods, and is very costly since it needs tremendous repeated computations for all
different samples, particularly when finite element analysis is adopted. In this paper, the
statistical dynamic responses obtained by the perturbation method are checked by Monte
Carlo simulation. Since the Young's modulus of elasticity E is assumed as stochastic in
position, we have to generate many different sample functions to describe the fluctuation
of the random variable fl. This can be done by using the following equation:

N

'lex) = j2 L [S~(K;)AK] 1/2 cos (K;X- 4>;),
i=1

(31)

(32)

where S~(,,) is the one-sided spectral density of the random variable fI, leu is the upper cutoff
wave number of the spectral density, K[ is the lower cutoff wave number of the spectral
density, N is the total number of intervals in the discretization of the spectrum and 4>; is an
independent random phase angle uniformly distributed between 0 and 2n. Many different
sample functions for 'l(x) can be generated from eqn (31), then different sample functions
will produce different Young's modulus E, different element stiffness matrix [k] and different
global stiffness matrix [K]. Then the dynamic finite element equation of motion is solved
many times due to many different sample functions using the technique of Newmark
integration algorithm. The statistical dynamic response can be computed from all these
different dynamic responses.

7. PROBABILITY PAPER AND RELIABILITY ANALYSIS

In the previous sections, we have discussed how to compute some statistical properties
of deflection, strain, and stress. However, it is interesting to know what distribution of
strain or stress is. There are some methods that can accomplish the above task. In this
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paper, the so called probability paper is adopted for determining the distribution of the
dynamic response. The concept of the probability paper is that a distribution function is
represented by a straight line on its associated probability paper. That is, if the distribution
function associated with the probability paper is really the population distribution function
from which the random processes are taken, then it is expected that these points are scattered
around a straight line within a reasonably small deviation. Therefore, the distribution
function associated with probability paper is accepted as the population distribution unless
those points are evidently scattered around a curved line instead ofa straight line. In general,
four types of more familiar distribution, specifically the normal, log-normal, asymptotic of
the first kind and Weibull are considered in order to find the best possible fit to the data.

As long as the distribution of the statistical response is known, the reliability analysis
can be performed. Of course, from the engineering point of view, any of the responses such
as deflection, strain or stress can be used as the criteria of the reliability depending on which
field of engineering structure and which specification or code we are dealing with. For
example, if the stress is used as the criteria of the reliability analysis, and the maximum
induced stress is determined to be log-normal distributed due to probability paper plot,
then we can define the reliability of the beam in such a way that the beam would survive
as long as its maximum induced stress is absolutely less than its allowable stress which is
also assumed to be log-normal distributed, then the reliability of the beam is only related
to the mean value and the standard deviation of the maximum induced stress and the
allowable stress. Then the reliability or safety index f3 can be defined as follows:

f3 = In (JiAIJiI) ,

JV~+Vi
(33)

where JiA and JiI are the mean values of the allowable stress and maximum induced stress
individually, VA and VI are the coefficient of variation of the allowable stress and the
maximum induced stress, respectively. The reliability of the beam can then be computed as
follows:

P, = $0(f3), (34)

where $0 is the standardized normal distribution function. Incidentally, the probability of
failure of the beam can be expressed as:

(35)

8. NUMERICAL EXAMPLES

In this numerical analysis, the boundary conditions of the beam are assumed as simply
supported at both ends. The following parameter values are used for describing the material
and geometry of the beam: L = 100 ft (30.48 m), Eo = 3.0 X 104 ksi (2.068 x 10 11 N m- 2),

/0 = 1000 in 4 (4.l6x 10- 4 m 4
), A o = 120 in 2 (0.0774 m 2

), (Tn = 0.1, p = 15.2 slug ft- 3

(7840.2 kg m - 3), and

[
2(l-Y) JA(x) = A o L Ix-L121 +Y ,

[
2(l-Y) J3

lex) = 10 L Ix-L121 +y ,

(36)

(37)

where Eo is the mean value of the Young's modulus of the beam, 10 is the moment of inertia
of the beam at both ends, A 0 is the area of the cross section of the beam at both ends, Y is
a constant to describe the nonuniform property of the beam, Y must be greater than zero
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in both eqns (36) and (37), and y = 1.0 represents a beam with uniform cross section, y is
assumed as 1.1 in the present numerical example. Also, p is the density of the beam, and
the total numbers of finite element NE is 40. Incidentally, the damping matrix C of eqn (5)
is assumed to be equal to 2~WIM, where ~ is the damping ratio and WI is the fundamental
natural frequency of the nonuniform beam. In this numerical example, ~ = 0.04 and
Wt = 4.278943 rad sec- I that is computed by using the Finite Element Software Package
MSCjNASTRAN. The dynamic loadingp(x, t) of the beam is assumed to bePoP, (t), having
a uniform magnitude equal to Po = 10 lb ft- 1 (146.1 N m-'), while the function PI(t)
describing its time dependence, which is a rectangular excitation from 0'(}-2.0 s with uniform
magnitude one. A computer code based on the perturbation method and Monte Carlo
simulation method has been written on HP 835/SRX to perform numerical analysis for the
problem. To perform Monte Carlo simulation, 250 different samples for the random
variable 11 are generated using the method mentioned previously. In Figs 1, 2, the mean
value and standard deviation of the maximum deflection of the beam at 0.75 s are presented
along the position. As it can be seen from Figs 1, 2, the results based on the perturbation
method and those computed by means of the Monte Carlo simulation show a good
agreement. It should be emphasized that the perturbation method is much faster than
Monte Carlo simulation as far as the computation time is concerned. The mean value and
standard deviation of the strain and stress for two different time instants are plotted in Figs
3-6, respectively. To investigate how the statistical dynamic response change against the
time, Fig. 7 shows the mean value of deflection with respect to time for two different
damping ratios. To study the distribution of the statistical response, the goodness of fit is
tested for some cases such as normal, log-normal, asymptotic of the first kind and Weibull
distributions, by plotting the data on the corresponding probability papers. In Fig. 8, based
on Monte Carlo simulation analysis, 250 different values of maximum strain of the beam
are plotted on the log-normal probability paper, it can be concluded from Fig. 8 that the
lognormal distribution fits best for the maximum strain of the beam. To perform the
reliability analysis of the beam, the strain and stress criteria are chosen even any other
criteria such as deflection could be used. The allowable strain is assumed to be log-normal
distributed, and the mean value and the coefficient of variation of the allowable strain are
assumed as 0.0003 and 0.2, respectively. Meanwhile, the allowable stress is assumed to be
log-normal distributed, and the mean value and the coefficient of variation of the allowable
stress are assumed as 0.04% of the mean value of the Young's modulus Eo and 0.2,
respectively. In Fig. 9, the probability offailure of the beam is plotted for both strain and
stress criteria with respect to the mean value of the Young's modulus of elasticity, it is quite
reasonable that the probability of failure of the beam decreases as the mean value of the
Young's modulus of elasticity gets larger.
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9. SUMMARY

The statistical dynamic responses of a nonuniform beam with stochastic Young's
modulus are obtained by using the perturbation technique in conjunction with the finite
element method. The proposed method produces the expectation, variance and auto­
correlation function of the deflection, strain and stress that are quite useful in estimating
the structural safety and reliability. Some statistical responses obtained by the perturbation
method are checked by the Monte Carlo simulation, also, the reliability analysis of the
structure is performed based on certain failure criteria of the structure.
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